Astrophysics Working Group Summary - Exciting, Broad, Robust Day One Science Program in Astrophysics - diverse topics include CCSNe, SNIa, Novae, XRBs, NS Mergers, Pop III stars - covering rp-, r-, α p-, ν p-, hot CNO, hot pp processes - Broad Range of measurement types - capture, transfer, (α,p) , decay, masses, charge exchange, total cross sections, TAS, LI fusion, HI collisions, HI fusion for EOS, fission ... - Diverse set of beams - ReA3 beams ³⁰P, ¹⁸F, ²²Mg, ²⁶Si, ³⁰S, ⁵⁶Ni, ⁵⁹Cu, ³⁴Ar, ³⁸K; ⁸B, ⁹C, ¹³O, ¹⁴O - ReA6 ReA12 beams ³⁰P, ³⁸K, ⁵⁹Cu, ⁶¹Ga, ⁶⁵As; ⁸¹Ni, ⁷⁶Cu, ⁷⁸Zn, ⁸⁰Ga, ^{86,88}As, ¹³¹Cd, ^{133 137}Sn, ¹³⁷Te - Fast beams ³¹F, ¹²⁵Tc, ¹³²Sn, ¹⁹C, ²⁸Ne - Stopped beams near N=82 and N=126, Uranium - Stable beams (for commissioning) ²⁰Ne, ¹⁵N, ²¹Ne, Ti, Ni, Al, Mg - Wide range of intensities - capture 10^7 pps, transfer & chargex 10^5 pps, σ 10^3 pps, decay << 10^2 pps - Wide range of experimental stations in all FRIB halls - SECAR, JENSA, HRS, ISLA, HELIOS, GRETINA/GRETA, AT TPC, HR AT TPC ANASEN, S800, DECAY STATION, SUN, MUSIC - Numerous facility requirements - suite of intense >10⁵-10⁶ pps ReA3 beams with gas and solid stopper - beam purification methods; long-pulse beam time structure - small beam widths < 3 mm; use 64 Zn primary beam for 59 Cu ReA3 beam - DAQ: unified, digital, > 1000 channels - Other requirements - H₂, ³He operations in JENSA; dispersion matched HRS with long flight path, precise 0.4 mm positions, <30 ps time resolution; GRETA with auxiliary detectors; fast detectors for high contamination ... # **Astrophysics Working Group Summary** #### General: - aggressively develop intense ReA3 beams with a full suite of stopping and isotope collection - many astrophysics experiments need >1e5 1e6 pps ### (p,γ) reactions direct measurements for rp-process with SECAR: - >1e6 pps beams with gas and solid stopper technology. Examples: ³⁰P, ³⁸K, ⁵⁹Cu - Suite of intense stable beams to commission SECAR - Add ⁶⁴Zn primary beam to list ## • $(\alpha,p),(p,\alpha)$ reactions for rp/ α p/ ν p process: ANASEN, JENSA - >1e6 pps of ¹⁸F, ²²Mg, ²⁶Si, ⁵⁶Ni, ⁵⁹Cu reaccelerated beams - development of techniques to deal with contamination purification, fast detection systems - lower intensity (< 1e4 pps) (α ,p) studies with MUSIC, 8B , 8C , ^{14}O , ^{18}Ne # (d,p), (d,n), (³He,d) transfer for rp-process - >1e5 pps beams, many beams - 3He operation of JENSA - decay studies: r-process around N=82 first, mostly Uranium beams - Masses with TOF - HRS, dispersion matched optics mode, long flight path, precise tracking 0.4 mm, time detection with <30 ps resolution ## (p,y) resonance studies for rp-process with GRETA - auxiliary detectors for neutron and charged particle detection needed for GRETA - may need dedicated systems, DAQ integration - Fission for r-process: Actinide fast beams - EOS probes through heavy ion collision, fast ¹³²Sn beam - modify AT-TPC for intense fast beams, but could be done with system today - AT-TPC in fast beam HRS area (move magnet, or use different magnet) - TAS for r-process (n,γ rates and beta decay) - 12C + 19C and 20Ne + 28Ne fusion for neutron star crusts - <500 pps but exotic short-lived neutron rich beams issues of isobars from decay?</p> - weak interaction strength with charge exchange for supernovae and neutron stars - Need HRS + TPC