Astrophysics Working Group Summary

- Exciting, Broad, Robust Day One Science Program in Astrophysics
 - diverse topics include CCSNe, SNIa, Novae, XRBs, NS Mergers, Pop III stars
 - covering rp-, r-, α p-, ν p-, hot CNO, hot pp processes
- Broad Range of measurement types
 - capture, transfer, (α,p) , decay, masses, charge exchange, total cross sections, TAS, LI fusion, HI collisions, HI fusion for EOS, fission ...
- Diverse set of beams
 - ReA3 beams ³⁰P, ¹⁸F, ²²Mg, ²⁶Si, ³⁰S, ⁵⁶Ni, ⁵⁹Cu, ³⁴Ar, ³⁸K; ⁸B, ⁹C, ¹³O, ¹⁴O
 - ReA6 ReA12 beams ³⁰P, ³⁸K, ⁵⁹Cu, ⁶¹Ga, ⁶⁵As; ⁸¹Ni, ⁷⁶Cu, ⁷⁸Zn, ⁸⁰Ga, ^{86,88}As, ¹³¹Cd, ^{133 137}Sn, ¹³⁷Te
 - Fast beams ³¹F, ¹²⁵Tc, ¹³²Sn, ¹⁹C, ²⁸Ne
 - Stopped beams near N=82 and N=126, Uranium
 - Stable beams (for commissioning) ²⁰Ne, ¹⁵N, ²¹Ne, Ti, Ni, Al, Mg
- Wide range of intensities
 - capture 10^7 pps, transfer & chargex 10^5 pps, σ 10^3 pps, decay << 10^2 pps
- Wide range of experimental stations in all FRIB halls
 - SECAR, JENSA, HRS, ISLA, HELIOS, GRETINA/GRETA, AT TPC, HR AT TPC ANASEN, S800, DECAY STATION, SUN, MUSIC
- Numerous facility requirements
 - suite of intense >10⁵-10⁶ pps ReA3 beams with gas and solid stopper
 - beam purification methods; long-pulse beam time structure
 - small beam widths < 3 mm; use 64 Zn primary beam for 59 Cu ReA3 beam
 - DAQ: unified, digital, > 1000 channels
- Other requirements
 - H₂, ³He operations in JENSA; dispersion matched HRS with long flight path, precise 0.4 mm positions, <30 ps time resolution; GRETA with auxiliary detectors; fast detectors for high contamination ...

Astrophysics Working Group Summary

General:

- aggressively develop intense ReA3 beams with a full suite of stopping and isotope collection
- many astrophysics experiments need >1e5 1e6 pps

(p,γ) reactions direct measurements for rp-process with SECAR:

- >1e6 pps beams with gas and solid stopper technology. Examples: ³⁰P, ³⁸K, ⁵⁹Cu
- Suite of intense stable beams to commission SECAR
- Add ⁶⁴Zn primary beam to list

• $(\alpha,p),(p,\alpha)$ reactions for rp/ α p/ ν p process: ANASEN, JENSA

- >1e6 pps of ¹⁸F, ²²Mg, ²⁶Si, ⁵⁶Ni, ⁵⁹Cu reaccelerated beams
- development of techniques to deal with contamination purification, fast detection systems
- lower intensity (< 1e4 pps) (α ,p) studies with MUSIC, 8B , 8C , ^{14}O , ^{18}Ne

(d,p), (d,n), (³He,d) transfer for rp-process

- >1e5 pps beams, many beams
- 3He operation of JENSA
- decay studies: r-process around N=82 first, mostly Uranium beams
- Masses with TOF
 - HRS, dispersion matched optics mode, long flight path, precise tracking 0.4 mm, time detection with <30 ps resolution

(p,y) resonance studies for rp-process with GRETA

- auxiliary detectors for neutron and charged particle detection needed for GRETA
- may need dedicated systems, DAQ integration
- Fission for r-process: Actinide fast beams
- EOS probes through heavy ion collision, fast ¹³²Sn beam
 - modify AT-TPC for intense fast beams, but could be done with system today
 - AT-TPC in fast beam HRS area (move magnet, or use different magnet)
- TAS for r-process (n,γ rates and beta decay)
- 12C + 19C and 20Ne + 28Ne fusion for neutron star crusts
 - <500 pps but exotic short-lived neutron rich beams issues of isobars from decay?</p>
- weak interaction strength with charge exchange for supernovae and neutron stars
 - Need HRS + TPC