Nuclear Data Working Group Summary

John Kelley
NCSU and TUNL

Revision of Nuclear Data Sheets format

New format has been heavily Influenced by user input

631.703 3 18.1 2 http://www.nndc.bel/gov/useroutput/AR_41076CBC64

New format will likely be folded into online services

2								γ ⁽¹⁶⁸ Er)		
1	E_i (level)	J_i^{π}	$E_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	\mathbb{E}_f	J_f^{π}	Mult.†	δ^{\dagger}	α	Comments
	79.804	2+	79.804 I	100	0.0	0+	E2		7.04	B(E2)(W.u.)=213 4
	264.0888	4+	184.285 I	100	79.804	2+	E2		0.331	B(E2)(W.u.)=319 9
	548.7470	6+	284.655 2	100	264.0888	4+	E2		0.0811	B(E2)(W.u.)=424 18
	821.1685	2+	557.079 3	1.74 8 ^f	264.0888	4+	$E2^f$		0.01252	B(E2)(W.u.)=0.61 4
			741.356 3	100 2€	79.804	2+	E2+M1 ^e	>25ea	0.00639 9	$B(E2)(W.u.)>8.0; B(M1)(W.u.)<1.6\times10^{-5}$
			821.164 5	93.6 48	0.0	0+	E2		0.00510 8	B(E2)(W.u.)=4.68 16
	895.7947	3+	74.626 3	0.04 1	821.1685	2+	M1+E2	+1.42 +4-5	8.35 13	B(E2)(W.u.)= 3.1×10^2 +8-12; B(M1)(W.u.)= 0.0018 +5-7 δ: sign from $\gamma \gamma(\theta)$ (1996Al31) in ε decay; magnitude from L1/L3 in (n, γ) E=thermal (1980Sc15).
			631.703 3	18.1 2g	264.0888	4+	M1+E2	$-4.8 \ 2^{b}$	0.00965 14	B(E2)(W.u.)=4.6 +3-14; B(M1)(W.u.)=0.000172 +18-51
			815.990 4	100 2g	79.804	2+	M1+E2	+17.7 23c	0.00518 8	$B(E2)(W.u.)=7.4 +5.21$; $B(M1)(W.u.)=3.4\times10^{-5}+9.13$
	928.3029	8+	379.545 3	100	548.7470	6+	E2		0.0346	B(E2)(W.u.)=354 13
	994 7474	4+	98 95		895 7947	3+				B(E2)(W.u.)=505 +122-40

Adopted Levels, Gammas (continued)

Actions Recommended by Brad Sherrill in Summary of Workshop on Nuclear Data Needs & Capabilities for Basic Science

- The USNDP must be maintained and improved. Evaluated nuclear structure and reactions data represent the fundamental building blocks of basic nuclear physics research. There is a strong need from the nuclear physics research community for reliable, up-to-date and comprehensive databases of nuclear properties and bibliographical information (see the talks: http://meetings.nscl.msu.edu/2016ND_workshop/html/program.html).
- Maintain a high level of expertise and activity in the critical area of nuclear structure data evaluation
- Continue the active role of the USNDP in research.
- Expand the scope to include more theory and nuclear astrophysics activities
- Have data management plans from investigators include submission of measured quantities,
 e.g. cross sections, which are presented in publications, in an easily readable format
- Continue development of new tools and products (software, data evaluation for researchers, ...)
 maybe hold targeted workshops to adress issues like continuous data
- Investigate the possibility to offer data-related pre-review of manuscripts (helping to avoid mistakes and errata)
- Version controlled publication of ENSDF to allow reproducible citations
- Continue the effort to digitize and catalogue old graphical data and obscure publications