## Comments from NSF



### Allena K Opper

- NSF Nuclear Physics Program Scope
- Announcements
  - New Solicitation
- Budget
- Physics Division Personnel





- Nucleon and Hadron QCD properties and behavior of nucleons and nuclear matter under extreme conditions, confinement, hadron spectra, nuclear equation of state
- Nuclear Reactions and Structure structure of manybody nuclei and reactions of relevance to structure
- Nuclear Astrophysics origin of the elements, properties
  of dense matter in a compact object, nuclear reactions that
  drive stars and stellar explosions
- Nuclear Precision Measurements and Fundamental Symmetries – tests of QCD and chiral perturbation theory, tests of the Standard Model in a strongly interacting environment
- Nuclear Theory structure and reactions of nuclei and of hadrons in few-nucleon and nuclear environments, the quark/gluon substructure expressed by QCD

## Highlights



- A few selected results shown here:
  - Results from some NSF Pl's.
  - NSF experimental nuclear physics funds a broad range of experiments, and only a few results are highlighted. Apologies to those not included.
  - Send me your highlights!

## **NSCL**: Five-year Renewal Award



National User Facility

Research Program of MSU Nuclear Science Faculty

Smooth & Efficient Transfer from NSF/NSCL → DOE/FRIB

• MOU





Low Energy Community Meeting

## Prad Experiment (JLab Hall B)

- PRad to address the "Proton Radius Puzzle".
  - ✓ novel hydrogen gas flow windowless target (funded by NSF MRI award: PHY-1229153);
  - ✓ HyCal calorimeter refurbished and tested;
  - ✓ GEM large-size detectors constructed and tested
  - ✓ integrated high-speed DAQ system developed and tested;
- PRad acquired data from May 13 to June 21, 2016.
  - ✓ data taking at 1.1 GeV and 2.2 GeV
- Major accomplishments so far:
  - ✓ 2x10<sup>+18</sup> (H atoms/cm²) areal density in hydrogen gas flow target achieved;
  - ✓ lowest Q² data set (~10-4 GeV/C²) have been collected for the first time in ep-scattering experiments;
  - separation of Moller and ep-events at very low scattering angles demonstrated.





Low Energy Community Meeting

August, 2016

## **Hall D Triplet Polarimeter**

- Uses triplet photoproduction process to measure photon beam polarization
  - Triplet production: pair production on an atomic electron
  - Polarization in photon beam yields asymmetry in recoil atomic electron distribution
- Double-sided silicon strip detector, vacuum housing, beryllium target, and custom electronics





Recoil electron azimuthal angle  $\varphi$  (deg)



### CLAS12

## **Forward Tagger**

NSIP-

(funded by NSF MRI award: PHY-1229060)

FT designed to detect electrons and photons at small angles

FT-Cal: calorimeter to measure electron

energy/momentum

FT-Hodo: scintillation hodoscope to veto

photons & backsplash

FT-Trk: micro-mega detector to measure

electron angles, polarization plane







Schedule: Installation in CLAS12 - 11/2016

## Neutral Particle Supported by Spectrometer (NPS)

NSF-MRI 1530874



- ☐ Highly segmented PbWO₄-based EM calorimeter preceded by a sweeping magnet
  - Brings precision coincidence with neutral-particle detection
  - Required for five approved experiments in Hall C
- MRI provides for detector infrastructure and magnet assuming existing crystalsSteel for sweeping magnet on-site, design
  - nearly final
  - > Detector frame design concept completed, ready for detailed design
  - High voltage divider linearity optimization to begin
  - Significant efforts related to PbWO<sub>4</sub> crystals due to large variations that affect resolution performance requirements
    - In collaboration with EIC-related detector R&D
    - 45 SICCAS crystals being evaluated at CUA in collaboration with IPN-Orsay and Giessen University



Light transmittance of the crystals with spectrophotometer





X-ray machine for radiation hardness characterization



ED annealing

### STAR results:

#### Inclusive jets: Asymmetry results from 2009 data



#### First strong evidence for non-zero gluon polarization in proton!

- Exploit greatly improved RHIC performance in luminosity, polarization
- $\Leftrightarrow$  Higher EMC trigger thresholds  $\Rightarrow$  increased focus on high- $p_T$  region
- Combination of above  $\rightarrow$  factor of 3-4 in stat. precision at high  $p_T$





First physics result

anti-quark distribution in nucleon sea

Physics Program

dbar/ubar Sea quark EMC effect

Absolute Drell-Yan cross sections

Partonic Energy Loss in cold nucl matter

J/ψ Nuclear Dependence

TMDS: Bohr-Mulders function

Dark Photon search

Main Responsibilities (LD<sub>2</sub> & LH<sub>2</sub>)

C. Aidala & W. Lorenzon (Michigan)





new D1 wire chamber: access to large x

E. Kinney (Colorado)



Dark Photon Search

R. Gilman (Rutgers)



# Re-Accelerator Facility at NSCL – Now Running!



First re-accelerator coupled to an in-flight rare isotope production facility



## New work at NSCL: constrains neutron capture rates – key to modeling stellar explosions

NSF

- The abundance pattern from stellar events encodes the underlying physics.
- Nuclear reaction rates needed to test r-process models against observations
- Color = uncertainty of neutron-capture rates. Most key reactions are far from stability



- New technique using  $\gamma$ -ray calorimetry developed by MSU and Univ of Oslo using SuN detector at NSCL used to extract <sup>69</sup>Ni(n, $\gamma$ )<sup>70</sup>Ni.
- Uncertainty is now approximately 2-3 (dark blue band) – achievable for rare isotopes far from stable
- Accurate rates allow model comparisons. With error of 2-3 dark green band is possible





SuN detector at NSCL



S.N. Liddick, A. Spyrou et al., Phys. Rev. Lett 116, 242502 (2016)

http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.116.242502

## Connecting astrophysics and lowenergy nuclear physics





## **Announcements:** Solicitation for NSF Physics Division Investigator-Initiated Research Projects 16-566



#### Deadlines:

- November 11, 2016 for Experimental Nuclear Physics & Theoretical Nuclear Physics
- December 1, 2016 Computational Physics
- February 1, 2017 for Accelerator Science
- Follow Grant Proposal Guide checklist
- Other requests (conf. support, supplements, etc.)
  - Talk with us first (email or phone)
  - Submit at the same due date as above
  - Priority goes to summer schools and CEU
- Includes text on Midscale Instrumentation

## REU Supplements



- Available to NSF grantees to fund an undergraduate student (US citizen or permanent resident) for the summer.
  - Typically about 5 requests per year.
- Usually \$5,000 (awarded as a supplement)
- Submit in Fastlane as a supplement to current grant.
   Must contact program director before submitting request funds may not be available.

## Career Awards



- Must include excellent research program as well as excellent educational plan
- There are eligibility requirem e.g., must be There are engibility requirer?
  assistant professor.
  5 year awards
  Full proposition: July 22, 2016 (for MPS)

- Contact program director for information/advice ahead of time (budget, scope)
- Solicitation: 15-555
- PECASE nominees are chosen from eligible **CAREER** winners

## Major Research Instrumentation (MRI)



- Two types of awards: development and acquisition
- Contact program directors well ahead of submission to discuss (avoid pitfalls)
- Limited submissions from each university
- Maximum award is \$4M; awards above \$1M compete across the entire Foundation
- FY16: Physics received ~35 proposals, NP received 10 proposals
  - Recommended funding for two ENP awards totaling \$1.867 M
- Next deadline: Jan. 11, 2017



## Mid-Scale Instrumentation

- The Physics Division has established a mid-scale instrumentation fund. The intention is to fund projects above \$4 million (the MRI limit).
- This funding is NOT available for "operations" so program funds are used to run the experiment.
- Contact us for more information. Pls cannot apply to mid-scale directly; all proposals must go through the program. See solicitation 16-566.
- A priority of the division (and the directorate) is to increase the resources available for mid-scale.

## **NSF** overall trends





## National Science Foundation



NSF \$ 7344 M \$ 7724 M 5.2%

R&RA \$ 5934 M \$ 6186 M 4.2%

FY 2016 (estimate)

\$ 7463 M 1.6%

\$ 6034 M 1.7%

FY 2016

**BUDGET REQUEST TO CONGRESS** 





#### Physics (PHY) Funding

(Dollars in Millions)

|                                                      |          |          |          | Change Over |          |  |  |
|------------------------------------------------------|----------|----------|----------|-------------|----------|--|--|
|                                                      | FY 2014  | FY 2015  | FY 2016  | FY 2015 E   | Estimate |  |  |
|                                                      | Actual   | Estimate | Request  | Amount      | Percent  |  |  |
| Total, PHY                                           | \$267.09 | \$274.99 | \$277.37 | \$2.38      | 0.9%     |  |  |
| Research                                             | 163.82   | 176.05   | 176.19   | 0.14        | 0.1%     |  |  |
| CAREER                                               | 8.57     | 7.44     | 7.45     | 0.01        | 0.1%     |  |  |
| Centers Funding (total)                              | 0.02     | 0.02     | -        | -0.02       | -        |  |  |
| Nanoscale Science & Engineering Centers              | 0.02     | 0.02     | -        | -0.02       | -        |  |  |
| Education                                            | 5.38     | 5.56     | 5.32     | -0.24       | -4.3%    |  |  |
| Infrastructure                                       | 97.89    | 93.38    | 95.86    | 2.48        | 2.7%     |  |  |
| IceCube Neutrino Observatory                         | 3.45     | 3.45     | 3.45     | -           | -        |  |  |
| Large Hadron Collider (LHC)                          | 17.37    | 18.00    | 18.00    | -           | -        |  |  |
| Laser Interferometer Grav. Wave Obs. (LIGO)          | 36.43    | 39.43    | 39.43    | -           | -        |  |  |
| National Superconducting Cyclotron Laboratory (NSCL) | 22.50    | 23.00    | 24.00    | -           | -        |  |  |
| Research Resources                                   | 11.56    | -        | -        | -           | N/A      |  |  |
| Mid-scale Research Infrastructure                    | 6.58     | 10.00    | 12.48    | 2.48        | 24.8%    |  |  |

Totals may not add due to rounding.

## Budget Trends – NSF Nuclear Physics



~ 25% = Research

~ 75% = Operations

| FY   | Hadrons<br>& Light<br>Nuclei<br>(k\$) | Structure<br>& Heavy<br>Ions<br>(k\$) | Fund.<br>Sym.<br>(k\$) | Nucl.<br>Astro.<br>(k\$) | Theory<br>(k\$) | Program<br>Total<br>(k\$) | NSCL<br>(k\$) | JINA<br>JINA<br>-CEE<br>(k\$) | MRI<br>(K\$) | Mid-<br>Scale<br>(K\$) | Total<br>Nuclear<br>Physics<br>(k\$) |
|------|---------------------------------------|---------------------------------------|------------------------|--------------------------|-----------------|---------------------------|---------------|-------------------------------|--------------|------------------------|--------------------------------------|
| 2009 | 7,663                                 | 4,734                                 | 5,572                  | N/A                      | 5,825           | 23,794                    | 22,500        | 2,000                         | 8,058        | 9,524                  | 65,877                               |
| 2010 | 6,421                                 | 6,863                                 | 5,532                  | 1,078                    | 3,855           | 22,672                    | 21,000        | 2,150                         | 1,134        |                        | 46,956                               |
| 2011 | 5,349                                 | 6,485                                 | 5,336                  | 1,994                    | 3,719           | 22,883                    | 21,500        | 2,150                         | 729          |                        | 47,262                               |
| 2012 | 7,657                                 | 3,375                                 | 5,855                  | 1,610                    | 3,829           | 22,326                    | 21,500        | 2,150                         | 2,744        |                        | 48,720                               |
| 2013 | 5,218                                 | 4,259                                 | 5,304                  | 1,754                    | 3,474           | 20,008                    | 21,500        | 2,150                         | 2,996        | 490                    | 47,144                               |
| 2014 | 5,275                                 | 4,215                                 | 5,250                  | 2,475                    | 3,514           | 20,728                    | 22,500        | 2,280                         | 1,038        | 1,188                  | 47,733                               |
| 2015 | 5,941                                 | 3,722                                 | 6,818                  | 2,245                    | 4,183           | 22,908                    | 23,000        | 2,280                         | 1,801        | 1,367                  | 51,357                               |

FY15 Fundamental Symmetries: includes \$1.32M for  $0\nu\beta\beta$ 

MRI: competes each year; supplemental one-time acquisition/development funds Mid-scale: ad hoc competition; supplemental construction funds

## **Experimental Nuclear Physics Program**





\* 2015 includes 8 0vBB proposals 2016 includes 7 0vBB proposals



Submitted



#### **ENP Funding Trends** Requested funds 1st yr (M\$)

New awards only

■ Awarded Funds 1st yr (M\$)



## NSF/MPS/Physics Personnel



- France Cordova Director
- Fleming Crim Associate Director for MPS
- Denise Caldwell Physics Division Director
- Brad Keister Deputy Division Director
- Bogdan Mihaila Nuclear Theory Program Director
- Ken Hicks Expt'l Nuclear Physics Program Director has returned to his institution
- Allena Opper Expt'l Nuclear Physics Program Director

Search for a "rotator" Program Director in Experimental Nuclear Physics nearly complete! New person will likely start soon after September 2016

http://www.nsf.gov/pubs/2015/phy15001/phy15001.jsp?org=PHY

http://www.nsf.gov/careers/rotator/index.jsp
Low Energy Community Meeting August, 2016

## For the latest updates, check out

http://www.nsf.gov/div/index.jsp?div=PHY

#### Contact us:

- <u>bmihaila@nsf.gov</u> or call (703)292-8235
- aopper@nsf.gov or call (703)292-8958

