ARUNA: Ohio University

Carl Brune

Association for Research at University Nuclear Accelerators

Ohio University: Athens, Ohio

Strong nuclear presence in the Department of Physics and Astronomy. Besides Low Energy Experiment, we have:

Nuclear Theory:

- Charlotte Elster
- Daniel Phillips
- Madappa Prakash

Intermediate Energy Expt:

- Justin Frantz
- Ken Hicks
- Julie Roche

Low Eergy Experiment

Faculty

- Carl Brune (Prof.)
- Steve Grimes (Prof. Emeritus)
- David Ingram (Prof.)
- Tom Massey (Res. Prof.)
- Zach Meisel (Ast. Prof.)
- Alexander Voinov (Res. Prof.)

Research Staff

- Don Carter
- Devon Jacobs

Graduate Students

- Shamim Akhtar
- Nadyah Alanazi
- Kristyn Brandenburg
- Sushil Dhakal
- Rekam Giri
- Som Paneru
- Cody Parker
- Andrea Richard

Undergraduate Students

- Alex Carroll
- Colton Feathers
- David Overton (to TAMU)

The Edwards Accelerator Laboratory

Edwards Accelerator Laboratory at Ohio University

Beam Swinger Facility

Laboratory Layout

- Beam swinger
 - Rotates to angles from 0° to 155°, and backward to 180°
- Well-shielded 30-m tunnel for neutron time-of-flight (TOF) measurements
- Charged-particle scattering chamber (RBS)
- Charged-particle time-offlight spectroscopy with up to 2-m flight paths
- W.M. Keck Thin Film Analysis Facility
- 6 instrumented beamlines

Research Areas

- Nuclear Astrophysics
 - transfer reactions
- Nuclear Structure: Statistical Nuclear Physics
- Applications
 - inertial confinement fusion
 - materials science
 - radiation damage,...
- Substantial outside program
 - user facilities, other ARUNA labs, NIF, international

Management and Funding

- Operated by Ohio University
- Research support provided by
 - DOE/Office of NP, DOE/NNSA, LLNL
- Significant number of external users

$^{12}C(\alpha,\gamma)$ via $^{12}C(^{6}Li,d)$ and $^{12}C(^{7}Li,t)$

- Asymptotic Normalization Constants (ANCs) or reduced α widths of bound states are essential for understanding the cross section at astrophysical energies
- These quantities can be reliably extracted from measurements of α transfer at sub-Coulomb energies
- Our approach: pulsed Li beams, TOF for particle ID
- Builds on previous work: Brune et al., PRL 83, 4025 (1999) and Avila et al., PRL 114, 071101(2015)
- Focus: experimental precision and evaluation of model (DWBA) uncertainties
- Ph.D. project of Shamim Akhtar

E-TOF Spectra

¹²C(⁷Li,t)¹⁶O: E-TOF spectrum at 6-MeV for 30-μg/cm²-thick ¹²C foil at 37.5⁰

Resulting Deuteron Spectrum

E[6Li]= 5.0 MeV, θ_L =142.5 degrees

Experimental Cross Sections and DWBA Fits $J^{\pi}=1^{-}E_{x}=6.92$ -MeV state of ¹⁶O

Neutron Time-of-Flight Technique

24
Mg + 3 He \rightarrow 26 Si(*) + n

- time of flight \rightarrow neutron energy
- kinematics \rightarrow E_x in ²⁶Si
- $\Delta t \approx 2 \text{ ns}$
- long flight path, low E_n desirable
- NE-213 scintillator → neutron / gamma discrimination

Excellent energy resolution achievable (10 keV)!

Neutron Energy Spectra

[Y. Parpottas et al., PRC 70, 065805 (2004)]

full spectra

24 Mg(3 He,n) 26 Si(*)

Key Result

Mirror nucleus leads us to expect 3⁺ and 0⁺ in this region.

$$\Gamma(4.527) = 17(4) \text{ keV}$$

Neutron Energy (MeV)

Statistical Nuclear Physics

Research program led by A. Voinov and S. Grimes

Example: Level Densities

Level density as a function of excitation energy can be obtained experimentally from particle spectra of compound nuclear reactions

The concept:

$$\frac{dS(E)}{dE} \sim S_C(E) \frac{T_{out}(E') r_f(E^*)}{\underset{i}{\mathring{a}} T_{out i}}$$

Make sure that the compound reaction mechanism dominates.

- 1. Select appropriate reactions (beam species, energies, targets).
- 2. Measure the outgoing particles at backward angles
- 3. Compare reactions with different targets and incoming species leading to the same final nuclei

Results from ⁷Li induced reactions E[⁷Li]=15 MeV

Back shifted Fermi-gas Model (BSFG)
Gilbert and Cameron Model (GC)

parameters from RIPL3

The ${}^{3}H(d,\gamma){}^{5}He$ Reaction

- Inertial confinement fusion studies at the National Ignition Facility
 - γ-rays useful for diagnostic purposes
 - 3 H(d, γ)/ 3 H(d,n) branching ratio detected γ -rays can be used to determine the number of fusions
 - Roughly 1 γ-ray for 10,000 neutrons
- Understanding of the properties of the unbound ⁵He nucleus
 - Broad 1st excited state overlaps with ground state above α+n

3 H(d, γ) 5 He - Experiment

- Pulsed & bunched 500-keV deuteron beam
- Swinger beamline and concreteshielded tunnel
 - Lead bricks at tunnel entrance
 - Swinger angles of 90°, 45°, 135°
- Solid tritium target
 - 3 H:Ti ratio ≥ 1.5
- BGO for γ -rays
 - TOF technique
 - 3.9-meter flight path
- Silicon for α 's
 - Inside target chamber
- Stilbene and NE-213 for neutrons
 - TOF & PSD
- Ph.D. project of Cody Parker

Swinger and tunnel entrance

3 H(d, γ) 5 He - BGO Spectra for 90 $^\circ$

Recent Outside Users

Date(s)	PI	Institution – Project
June-July 2012; July 2013	S. Padalino, M. Yuly	SUNY Geneseo, Houghton College $\sigma(E)$, $^{12}C(n,2n)^{11}C$
March 2014; May 2016	A. Enqvist, et al.	University of Florida, University of Michigan Detector Calibration
Sept. 2014	J. Hall, D. Bleuel	Lawrence Livermore National Laboratory (d,n) on ⁹ Be, B, and ¹³ C
Feb. 2015; April 2015	A. McEvoy	Los Alamos National Laboratory $^{13}\text{C}(n,n'\gamma)$
May 2015	B. Wilson, T. Blue	Ohio State University Radiation Damage
Jan. 2016	A.C. Larsen, S. Liddick, et al.	Oslo University, Michigan State University Level Density Studies
April 2016	T. Ahn, et al.	Michigan State University Neutron Detector Calibration using D(d,n)
August 2016	M. Hogsed	Air Force Institute of Technology Radiation Damage

To Summarize

- Edwards Accelerator Laboratory at Ohio University:
 - 4.5-MV tandem accelerator
- Research:
 - Nuclear Astrophysics, Nuclear Structure, Applications
- Complimentary to NSCL, ATLAS, TRIUMF, NIF,...
- Thanks for your attention!

